
www.manaraa.com

Cost of Ensuring Safety in Distributed Database Management Systems

Maitrayi Sabaratnam, Maitrayi.Sabaratnam@idi.ntnu.no
Norwegian University of Science & Technology(NTNU)

Øystein Torbjørnsen, ClustRa AS
Oystein.Torbjornsen@clustra.com

Svein-Olaf Hvasshovd, NTNU
Svein-Olaf.Hvasshovd@idi.ntnu.no

Abstract

Generally, applications employing Database Manage-
ment Systems (DBMS) require that the integrity of the data
stored in the database be preserved during normal opera-
tion as well as after crash recovery. Preserving database
integrity and availability needs extra safety measures in the
form of consistency checks. Increased safety measures in-
flict adverse effect on performance by reducing throughput
and increasing response time. This may not be agreeable for
some critical applications and thus, a tradeoff is needed.

This study evaluates the cost of extra consistency checks
introduced in the data buffer cache in order to preserve the
database integrity, in terms of performance loss. In addi-
tion, it evaluates the improvement in error coverage and
fault tolerance, and occurrence of double failures causing
long unavailability, with the help of fault injection. The
evaluation is performed on a replicated DBMS, ClustRa
[9].

The results show that the checksum overhead in a DBMS
inflicted with a very high TPC-B-like workload caused a
reduction in throughput up to 5%. The error detection cov-
erage improved from 62% to 92%. Fault injection experi-
ments shows that corruption in database image went down
from 13% to 0%. This indicates that the applications that
require high safety, but can afford up to 5% performance
loss can adopt checksum mechanisms.

1 Introduction

A system behavior can be specified by standard seman-
tics, failure semantics, and stochastic behavior [4]. Stan-
dard semantics describes how the system intend to func-
tion. Failure semantics describes in what ways the system
can fail. Defining the failure behavior of a system is es-
sential for designing the recovery actions in a fault tolerant
system. Failures outside the failure semantics are defined
as catastrophic failures. Stochastic behavior expresses

the minimum probability for the standard behavior and the
maximum probability for a catastrophic failure. Safety is
defined as non-occurrence of catastrophic failures [10].

Failure semantics are classified into performance (giv-
ing late response), response (value failure- giving wrong
response, state failure- performing wrong state transition),
omission (not responding to an input), and crash (after
omitting a response, no further response is given until the
crashed server is restarted) failure semantics [4]. A crash
is classified further into amnesia crash (restart from a pre-
defined state independent of the state prevailed during the
crash) and atomic crash (restart from the state at crash).

A DBMS server obeying ACID1 [7] properties have per-
formance, omission, and atomic crash failure semantics. In
other words, DBMSs may give a belated response to a client
request, e.g., due to resource contention. They may omit
a response when a transaction is aborted, e.g., in order to
break a dead lock. They omit responding to client requests
during server crashes. A DBMS recovers from a crash at
its last committed state. The requirements concerning re-
sponse time is included into the DBMS standard semantics.
The upper bound for recovery time or unavailability is in-
cluded in the failure semantics.

Response failures and non-atomic crash failures are out-
side the DBMS failure semantics. Value failures occur
when the DBMS returns an incorrect response to a client
request. State failures occur when the database image does
not conform to the changes made or intended to be made by
the committed transactions. This can happen due to residual
software faults that perform incorrect updates or recovery,
or corrupt the database image accidentally as a result of a
wild pointer. An inconsistent database image can be con-
tagious, when newer updates are performed based on the
infected values. Non-atomic crash recovery may leave the

1Atomicity- either all the operations belong to a transaction are exe-
cuted or none of them are executed; Consistency- a transaction leads a
database from a consistent state to another consistent state; Isolation- the
changes made by a transaction will not be visible to other transactions until
this transaction commits; Durability- the effect of the committed transac-
tions will not be lost.

1

www.manaraa.com

database image in an inconsistent state after the crash recov-
ery; Sometimes, recovery may cause longer recovery time
or unavailability than that specified in the failure seman-
tics. Such catastrophic events may cause severe economic
or fatal consequences. In this study, we define corruption
in database image and long DBMS unavailability during re-
covery (see Sec. 5.5 for double failures) as catastrophic
events.

Fault injection studies performed on DBMSs demon-
strate the possibility of safety violations in DBMSs. Ng and
Chen [12] showed that the database got corrupted in 2.3%
to 2.7% cases even when a reliable memory for caching data
was integrated into POSTGRES DBMS. A study conducted
by the authors on ClustRa DBMS points out the necessity
of introducing some form of consistency check in order to
guard the database image from corruption [13]. Consis-
tency checks can be introduced in the software at different
levels to achieve different safety levels. But they do not
come for free. The more the consistency checks, the higher
the adverse impact on transaction response time. This may
not be agreeable for some critical applications. Therefore,
it is necessary to quantify the cost of different safety levels
in order to determine the cost-performance tradeoff.

The primary purpose of this study is to evaluate the cost
of introducing consistency checks (Sec. 2) to prevent cor-
ruption in database image in terms of performance loss
(Sec. 4). In addition, it evaluates the effectiveness of the
consistency checks in guarding the database from corrup-
tion, with the help of fault injection (Sec. 5). ClustRa
DBMS [9] V2.0(beta) is used as the test bed for the experi-
ments (Sec. 3). Sec. 6 summarizes the results and presents
the conclusion derived.

2 Consistency Checks for DBMSs

In this section, we shall look at the checks or error de-
tection capabilities that can be incorporated into the DBMS
software. This excludes the operating system capabilities
that detect address or data access violations, or the program-
ming language type checking capabilities at runtime.

2.1 Checksums

One way to detect errors is to incorporate consistency
checks, assertions, and exceptions wherever appropriate,
based on the semantic rules pertaining to DBMSs. An-
other way is to attach checksums to the important, DBMS-
specific objects, such as, data buffer, log record, lock,
transaction, message, and execution-instruction [8] 2. These

2Data buffers in the memory are used as temporary working area.
Database images stored on disk pages are retrieved from the disk and
cached in the data buffers before a transaction performs any operations
on the data. Log records register the changes made by the transactions

two ways are complementary and implementing both will
strengthen the robustness of the DBMS, but as we men-
tioned earlier, the cost will be too high and therefore, a
choice among the prescribed consistency checks is neces-
sary.

The data buffer is a key data structure in a DBMS. Part
or whole of the database image is cached here for process-
ing. The ultimate corruption caused by malignant hard-
ware or software that can give catastrophic impact on in-
tegrity is the one that occur in database image. Sullivan
and Stonebraker [16] studied the use of hardware memory
protection to guard the data buffer cache as an effort to im-
prove the software fault tolerance in POSTGRES DBMS.
The overhead was 7-11% of the processing time for CPU-
bound workload. Our study evaluates the cost of introduc-
ing checksums in the data buffer structure and the improve-
ment on error detection and fault tolerance after the intro-
duction of checksums. Our study concentrates on safety
problems given that an error is occurred in data buffer area,
rather than the fault behavior or the mean time to catas-
trophic failures.

Checksums are generally used to detect errors and not to
mask them. A checksum attached to an object is calculated
whenever the object is updated and is stored within the ob-
ject or at another fault tolerant location. when the object is
accessed, its checksum is recalculated and compared with
the stored checksum. The probability that a 32-bit check-
sum does not detect an error is as low as ��� � ��

��� [8].
Therefore, one can safely assume that most of the overlay
that are not detected by the operating system checks or the
runtime type checking will be detected by the prescribed
checksum mechanism.

Checksums can be added to the objects (e.g., a transac-
tion, lock, log, or data buffer) as well as the access methods
(e.g., hash, B-tree, etc.) to the objects. Fig. 1(a) shows a
generic data structure of objects and an organization struc-
ture to access them. Fig. 1(b) shows transaction objects and
a hash table as the access method. A transaction object can
be accessed by the hash access method. Here, a checksum
field is attached to the access method as well as to each of
the objects found in the hash buckets. The hash vector and
object checksums must be updated appropriately. Check-
sums must be recalculated and checked against the stored
checksums, whenever the objects are accessed. Check-
sums connected to access methods may be tested only at the

on the database image and are used by aborting transactions or recovery
to bring the database image to a consistent state. Locks are used to seri-
alize the concurrent transaction operations that conflict on the same data
item. Transaction structures encapsulate the state and other information
pertaining to a transaction. Messages include execution-instructions and
other information exchanged between participant and coordinator process
involving in a transaction protocol, as well as communication between the
client and the DBMS server. For example, the checksum attached to a log
record can be used to detect corruption of the log record when it is being
used in recovery or transaction aborts.

www.manaraa.com

.

.

.

−checksum

.....

objects

(a) (b)

hash table

transaction object

Access
structure

Figure 1. (a) Checksums are attached to generic objects as well as to their access method. (b) An
example of transaction objects accessed by hashing the transaction identities.

restart of a DBMS instead of each access, for performance
reasons (compromising error latency).

Class of errors detected by checksums: A check-
summed object is defined as the object covered by a check-
sum. An update-time-window is defined as the time pe-
riod between an update of an object and the update of the
corresponding checksum. Checksums help to detect ac-
cidental corruption taking place on checksummed objects
outside the update-time-window. Such corruption can be
caused by malignant software faults, such as, wild pointers.
(Sullivan and Chillarege have presented the common soft-
ware faults that causes overlays [14, 15, 3] based on field
error reports for operating system IBM MVS and database
management system IMS). Errors that occur concurrently
during the update-time-window will not be detected by the
checksum mechanism. This class of errors are not covered
by the hardware memory protection mechanism adopted in
[16] either. A good example for corruption that are not de-
tected by the checksum are the faults in the software that
performs the updates wrongly and then updates the check-
sum accordingly. In addition, comes the traditional class of
errors that is not covered by checksums, e.g., a double bit-
flip on the same bit-position of two words where an XOR
of machine-words is used as the checksum.

2.2 Checksum Granularity in Data Buffers

Since we concentrate on data buffers, we shall look at its
structure before we proceed. A data buffer area consists of
used and unused data buffers. A data buffer accommodates
a disk page containing part of the database image. Each
buffer has a header part and a data part as shown in Fig. 2.
Data part consists of data records. Header part consists of
administrative data needed to maintain the data part as well

as to maintain the data structure (see Fig. 6 of the buffer
area.

Checksum Granularity and Computation Cost:

Finer granularity checksums, e.g., those attached to parts
of an object, reduce computation cost but increase error la-
tency. For example, a data buffer usually has a header part
of administrative data and a body part containing records.
Different parts are accessed for different purposes. Attach-
ing checksums to parts reduces computation costs at the ac-
cess, but trades off error detection in the unaccessed part.
For example, assume a data buffer page of 4K, having data
records with the size of 50 bytes and a header with the
size of 40 bytes. It may suffice for a transaction access-
ing only one record from a page, to recompute the check-
sums only for that record and the header, and check them
against the corresponding stored-checksums (see Fig. 2(b)).
If the checksum was attached to the buffer page level (see
Fig. 2(a)), then for each record access, the checksum for the
whole page have to be recomputed. This will take an order
more instructions. But checking the whole page will reduce
the error latency for the other non-hot-spot data records re-
siding on that page. The choice of the first method needs
more data storage capacity than the second method.

3 ClustRa as the Test Platform

ClustRa is a distributed DBMS providing highly avail-
able, high performance, scalable, and fault tolerant plat-
form for applications requiring soft real-time response time,
e.g., applications in telecommunications. It is a repli-
cated DBMS with a shared-nothing architecture, running

www.manaraa.com

..........
:
:

...... recn

rec1

tuple checksum

block headerblock header

(a) (b)

header checksum

Figure 2. Checksums attached to different
granularities: (a) buffer page (b) buffer header
and records.

on COTS UNIX or NT work-stations. It achieves fault tol-
erance by replicating data and DBMS process on different
computers connected by duplicated communication lines
with high-bandwidth. A ClustRa process is referred to as
ClustRa-node or simply node. Single node and communi-
cation line failures are masked. High availability is achieved
by a supervisor process monitoring the ClustRa DBMS pro-
cess at each node. ClustRa process is restarted by the su-
pervisor if it does not show any sign of life within a timeout
period. Besides, the supervisors at different nodes exchange
I’m alive messages. A virtual partition management proto-
col is used to maintain a consistent set of available nodes
and services[1, 9].

Fault Injection
 client

Transaction
 client

Transaction
 client

Superviser

ClustRa

ClustRa
 Node−11

ClustRa
 Node−21

ClustRa
 Node−22

ClustRa
 Node−12

ClustRa
Node−11

Transaction
 client

Figure 3. The experiment setup (ClustRa
Node-11 is zoomed). Initially, Node-11 and
Node-12 are active, and Node-21 and Node-
22 are spare.

A four-ClustRa-node cluster running on two SUN work
stations is used in the experiment. Each work station has
two 200 MHz UltraSPARC processors and runs two Clus-
tRa processes (one active and spare), as illustrated in Fig-
ure 3.

ClustRa-Node-11 and ClustRa-Node-12 are active, i.e.,
having data and ClustRa-Node-21 and ClustRa-Node-22
are spare, i.e., having no data. Node-11 and Node-12 are
counterpart nodes containing replicas of the database, i.e.,
for the data fragment Node-11 has the primary replica,
Node-12 has the hot standby replica, and vice versa. If
a node having a primary replica fails, its counterpart hot
standby node takes over the role of the primary. The
crashed node is restarted by the supervisor process. When
it finishes recovering the database content and catches up
with the changes made on the database while it was down,
with the help of the counterpart node, it takes back the pri-
mary role in order to balance the load on the nodes [2]. If
the crashed node could not repair within a timeout period,
then the spare node copies data from the acting primary and
takes back the primary role.

There are two sets of experiments conducted in this
study: Cost evaluation experiment and fault tolerance
evaluation experiment. The first one evaluates the cost
of the checksum, introduced in data record and data buffer
header levels, as described in Sec. 2, measured in terms of
performance loss. The other one evaluates the efficiency of
the fault tolerance of ClustRa - detecting errors, masking
node failures, and repairing the failed nodes. Detection of a
malignant error leads to the crash of a ClustRa node where
the error is detected. A node crash is masked by the hot
standby node taking over. The crashed node or the spare
node repairs itself and takes back role of the crashed node.
This reestablishes the fault tolerance level of the system.

4 Experiments for Cost Evaluation

The experiment conducted to evaluate the cost of check-
sums introduced in data buffer structure, is described in this
section. Subsection 4.1 presents the workload generated on
the system during the measured period. Subsection 4.2 de-
scribes the experiment structure, steps performed during an
experiment run, and the measures collected. Subsection 4.3
analyzes the results.

4.1 Workload Generator (WG):

The checksum overhead is expected to give less impact
on performance when the load at the system is low than
when it is high. In order to evaluate the checksum overhead
at different loads, different workloads are generated by,

1. varying the number of transaction clients (TC) using
the DBMS concurrently and

www.manaraa.com

2. the number of data records a transaction updates.
When the number of records accessed by a transaction
is low, overhead for sending and receiving messages
dominate the response time rather than the calculation
cost for checksums.

Twenty different workloads are generated by combining
the number of transaction clients (2, 4, 6, and 8) and the
number of records accessed by each transaction (1, 2, 4, 6,
and 8). Four-record access transaction resembles TPC-B
standard [6]. A TC is allowed to function for a maximum
of 300 seconds. Access to a data record is uniformly dis-
tributed, having no hot-spots. The database size is propor-
tional to the number of TCs, where each TC adds around
500KB to the database. The workload chosen is CPU-
bound, i.e., the disk latency is avoided.

4.2 Experiment Process:

Forty experiments are conducted on two DBMS
implementations- one with checksums and the other with-
out checksums- using the 20 workloads described above.
Each experiment consists of 10 runs, totaling 400 runs.
Each run takes around 10 minutes of clock time, giving 66
hours.

An experiment run consists of starting the DBMS and
the workload generator, stopping the DBMS, and analyz-
ing the logs, and is conducted by an experiment manager
(EM). ClustRa processes are started on four ClustRa nodes
as illustrated in Figure 3. The workload generator is started
240 seconds after the DBMS is started. The workload is
maintained for around 300 seconds, and then the DBMS is
stopped. Then, the information found in the DBMS log is
analyzed and the performance metrics is calculated.

The performance information logged by the DBMS are
1) throughput, 2) response time, and 3) the % of transactions
that finished within 15 milli-seconds. The last one can be
used to measure the ability to handle the load. The informa-
tion is calculated and written out for every 10-second time
window. The data belonging to the stable workload period
is extracted, i.e., the data belonging to the first three and the
last three 10-second-windows are left out. Throughput and
response time for an experiment is calculated by taking the
average for the stable period and again for the ten runs.

4.3 Results

Figures 4 and 5 show the impact of checksum overhead
in throughput and response time respectively. As mentioned
earlier, the impact of checksum overhead is more significant
in high transaction load than in low load. The maximum
performance loss observed is 7%.

The difference in response time in 6-client case for 4, 6,
and 8 record-access are: 391, 683, and 825 micro-seconds

300

400

500

600

700

800

900

1000

2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

T
P

S
)

No.of clients

1rec-Wock
2rec-Wock
4rec-Wock
6rec-Wock
8rec-Wock

1rec-Wck
2rec-Wck
4rec-Wck
6rec-Wck
8rec-Wck

Figure 4. Impact of checksum overhead in
throughput.

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 3 4 5 6 7 8

R
es

po
ns

e
tim

e
(M

ic
ro

 s
ec

)

No.of clients

1rec-Wock
2rec-Wock
4rec-Wock
6rec-Wock
8rec-Wock

1rec-Wck
2rec-Wck
4rec-Wck
6rec-Wck
8rec-Wck

Figure 5. Impact of checksum overhead in re-
sponse time.

respectively. The figures corresponding to 8-client case are:
726, 852, and 1228 micro-sec. The corresponding figures
for throughput are: 21, 33, and 36 transactions for 6-client
case and 33, 32, and 31 transactions for 8-client case. The
system reaches a saturated state when the load increases be-
yond a limit. This occurred in 6-client-8-record-access, 8-
client-6-record-access, and 8-client-8-record-access cases,
where the % of transactions finished within 15 mil.sec. in-
terval sank lower than the 95% limit (lowest observed is
55% in 8-client-8-record-access-with-checksum case). This
thrashing effect is clear in the constant throughput differ-
ences in 8-client cases and 6-client, 6 and 8 record-access
cases.

www.manaraa.com

5 Experiments for Fault Tolerance Evalua-
tion

5.1 Fault model:

The fault injection experiment is designed to validate the
robustness of the data buffer guarded by checksums. The
underlying fault model is transient software overlay errors
that corrupt the data buffer area. There are 2 reasons for
the choice: 1) As mentioned in Sec. 2, the main goal of the
DBMSs is to maintain the integrity of the database image
and overlay errors in the buffer area may cause severe in-
tegrity problems. Any software faults that ultimately result
into corrupting data buffer area directly or by propagation
are of interest for the study. 2) As pointed out by Sullivan
and Chillarege [14] in a study performed on operating sys-
tems and DBMSs, the software faults causing overlay errors
are hard to trace and their impact are much higher than the
regular errors.

Common software faults causing overlay errors are: as-
signment faults, initialization faults, wild pointers, copy
overflow, type mismatch, memory allocation, and undefined
state [14, 15, 11]. Overlay errors may corrupt any part of
code or data. The data buffer corruption is a subset of the er-
rors resulting from the software faults causing overlays. We
inject errors directly into the data buffer area in order to ac-
celerate the database corruption, instead of injecting faults
that result into direct or indirect corruption in data buffer
area. The drawback of injecting errors in this way is that
the mapping between representative faults and the result-
ing errors may not be captured in a representative manner.
Christmansson and Chillarege [5] have addressed issues rel-
evant to generating representative error sets that can be used
in fault injection experiments, based on the field defect data
for IBM OS.

5.2 Workload Generator (WG):

For the fault tolerance evaluation experiment, the WG
starts four parallel transaction clients (TC). The TCs send
single-record transactions in a back-to-back manner, where
each transaction performs either insert, delete, update, or
read operation on one record. The total load consists of 55%
update transactions, 20% reads, and the rest 25% is dis-
tributed among inserts and deletes such that at equilibrium,
75% of the inserted data exists. The size of the database is
around 5 MB at equilibrium. Further, the transaction load is
selected in order to exploit the system resources like CPU at
the server at a considerably high level, but at the same time
give enough spare capacity to enable the take-over process-
ing. The workload is designed to accelerate the access of
a corrupted location by reducing the database size and in-
creasing the number of transactions accessing the corrupted

records.

5.3 Experiment Process:

Different types of errors are injected. They corrupt dif-
ferent components of a randomly-chosen data buffer in use
in order to accelerate the error activation. Buffers are ar-
ranged in a B-tree structure, as shown in Figure 6(a).
The header part of a buffer (see Figure 6(b)) consists of
the following administrative data: buffer identifier, num-
ber of records in the buffer, number of free bytes in the
buffer, high water mark - the position where a new record
will be inserted, and a pointer to its next buffer (found
in leaf buffers only). A record also has an administra-
tive part and a data part. Administrative part contains:
a key descriptor describing the number of fields used to
identify a record uniquely and an administrative descrip-
tor stating whether a record has the knowledge about the
log record that contains information about the last change
a transaction made on the record and whether the record
has checksum. Data part of an index record contains ac-
cess path to a buffer in the next level of the tree. Data part
of a leaf buffer contains user data. In the following sec-
tions, errors overlaid on these components are referred to
as error types: BufferId, NoOfRecords, NoOfBytesFree,
HighWater, NextPointer, KeyDescriptor, AdmDescrip-
tor, NextLevelPointer, and UserData.

There were 30 runs conducted for each of the nine error
types mentioned above. The fault injection experiment was
conducted for the DBMS with checksum, totaling 270 runs.
The clock time used by each run is around fifteen minutes,
giving a total of 68 hours. In order to create different fault
scenarios as possible, each run was started with a different
seed such that the choice of a buffer to be corrupted and the
injection point in time varied. Therefore, the experiment did
not evaluate the repeatability of the error impact.

An experiment has the same steps as that of the one
described in Section 4. In addition, the following aspects
are added: a fault injector client is started 30 seconds after
the WG is started. Database content is dumped at the end
of the experiment before the DBMS is stopped. The TCs
kept a local copy of the database and perform the transac-
tions on the local database, just to check the ClustRa behav-
ior. They checked the content of the replies sent from the
DBMS with their own. Any discrepancies are logged. In
the analysis phase, TC’s database content is compared with
the DBMS’s, and the logs from the TCs is scanned in order
to find discrepancies.

5.4 Fault Injector:

Fault injector has a client part and a server part. A fault
injector client (FIC) injects an error type mentioned ear-

www.manaraa.com

NextLevelPointer

Next
Pointer

:
:
:
:

Record−1 Rec−

Record−3−ord−2

block
head

block
data

record
head

record
data

data
block

data
block

data
block

index
block

index
block

index
block

Figure 6. a) Arrangement of buffers in a B+-tree structure. b) the layout of a buffer.

lier into the data buffer area. Like TCs, FICs can also be
started on a non-ClustRa node. A FIC is started at a point in
time distributed uniformly between 30-60 seconds after the
workload generator is started. FIC is given the error type
and the relevant parameters by the EM. For example, if the
error type is BufferId, then the parameters will be a seed
value used by EM to repeat the run if necessary, a data table
identifier, and a flag saying whether the chosen buffer is an
index buffer, a data buffer, or any of them. FIC then sends a
message containing the fault injection request together with
the parameters. The server part of the fault injector is an ex-
tention of the DBMS server interface that handles requests
from a FIC. At the receipt of the message from a FIC, this
request is handled like the requests from the TCs. To pro-
cess this request a small piece of software code is added to
the DBMS server to a) access a buffer component as spec-
ified by the parameters and b) overlay a random bit pattern
accordingly. This takes very few machine instructions. In
addition, comes one extra message-receiving cost per run.

5.5 Results

In this section, fault tolerance and safety metrics gath-
ered from the experiment are presented. It is compared with
corresponding data presented in [13], where the DBMS op-
erated without checksum mechanism. The improvement in
the metrics after the introduction of checksum measures is
discussed. At the end, the reliability growth in the software
between the versions is briefed.

Fault tolerance issues: Coverage parameters for error
detection, masking, and establishing of the fault tolerance
level are evaluated and presented in Table 1. Error detec-
tion coverage: The second column shows the number of
runs where the injected errors are detected. All the injected
errors are detected by the checksum mechanism except the
22 errors that went undetected in the case of AdmDescrip-
tor error type. AdmDescriptor indicates whether a check-
sum test is required. This gives flexibility to applications.

Error # errors # failures # online
Type detected masked repair
NextLevelPointer 30 30 30
UserData 30 30 30
KeyDescriptor 30 30 30
AdmDescriptor 8 8 6
BufferId 30 30 30
NextPointer 30 30 30
NoOfRecords 30 30 30
NoOfBytesFree 30 30 30
HighWater 30 30 30
Total 248 248 246
Coverage (92%) (100%) (99%)

Table 1. Error coverage.

Checksum mechanism can be turned off dynamically or can
be assigned to only parts of data in the database. When the
code was scrutinized, it is found that only two bits are allo-
cated to the AdmDescriptor component which has 0-3 as the
legal values. Any corruption of it will lead to a legal value,
but in the worst case, a corruption can turn the checksum
test off. Fortunately, this corruption itself will not lead to
any problem. But any eventual corruption in other parts of
the record may go undetected. Solution is to have the check-
sum mechanism permanently or include it with the help of a
compiler option, but this will reduce the flexibility enjoyed
by the applications.

Error masking coverage: All the detected errors lead
to the ClustRa process to be crashed. This node failure is
masked by the takeover by the counterpart node.

Reestablishing the fault tolerance level: When a node
is crashed, the system functions with reduced fault toler-
ance level until the repair of the crashed node is finished.
To reestablish the fault tolerance level as soon as possible,
the crashed node is restarted by the node supervisor and it
performs online repair. The system is vulnerable during this

www.manaraa.com

Metric Without check, With check,
SW version 1.1 SW version 2.1

Detection coverage 62% 92%
Data corruption 13% 0%
Double failures 1% 0%
Masking coverage 98% 100%
Unsuccessful repair 15% 1%

Table 2. Improvement in fault tolerance and
reliability growth.

period, since the crash of the counterpart node will lead to
a double failure which is catastrophical. When a double
failure occurs, a spare node cannot take over online, since
it has no active source node to copy data from. This re-
quires recovery from a backup medium which may lead to
longer unavailability and loss of the transactions committed
recently.

Two cases of AdmDescriptor error type which went un-
detected in the primary node caused error propagation to the
counterpart node which made it to crash. It could not finish
repair within the rest of the experiment period, which was
around 10 minutes.

Catastrophic events: As defined in Sec. 1, user data
corruption and double failures are defined as catastrophic
events that threatens the system safety. In the 270 runs,
there were no double failures or user data corruption ob-
served.

Table 2 shows the different coverage metrics when the
system was operating with and without checksum mecha-
nism and for different versions of the DBMS software (see
[13] for more details of the data presented in column 2).
Checksum mechanism contributes directly to the improve-
ment of detection coverage and data corruption. Improve-
ment in the software design and implementation resulting
from the correction of the faults revealed by the fault in-
jection experiment on version 1.1 as well as the other test-
ing procedures contributed apparently to the improvement
in the other metrics presented in the table.

6 Summary and Conclusions

In order to improve safety, checksums are attached to
the data buffer headers and data records. Checksums are
checked at each access of the buffer and record, and at
flushing of a buffer from the cache to the disk. The latter
prevents corruption infecting persistent data. The cost of
improving safety is evaluated. The checksum overhead in
a DBMS inflicted with a very high TPC-B-like workload
caused a reduction in throughput up to 5%. The error detec-
tion coverage improved from 62% to 92%. Integrity of the

database has improved; Fault injection experiments shows
that user data corruption went down from 13% to 0%. This
indicates that the applications that require high safety, but
can afford up to 5% performance loss can adopt checksum
mechanisms.

References

[1] A. Abbadi, D. Skeen, and F. Christian. An Efficient Fault-
Tolerant Protocol for Replicated Data Management. ACM
Distributed Database Systems, pages 259–73, 1988.

[2] S. Bratsberg, Ø. Grøvlen, S. Hvasshovd, B. Munch, and
Ø. Torbjørnsen. Providing a Highly Available Database by
Replication and Online Self-Repair. International Journal
of Engineering Intelligent Systems, 4(3):131–139, 1996.

[3] R. Chillarege and N. Bowen. Understanding Large System
Failures - A Fault Injection Experiment. Proc. 19th. Ann.
Int’l Symp. Fault Tolerant Computing, pages 356–363, 1989.

[4] F. Christian. Understanding Fault Tolerant Systems. Com-
munications of the ACM, 34(2), Feb. 1991.

[5] J. Christmansson and R. Chillarege. Generation of an error
set that emulates software faults based on field data. In Proc.
26th. Ann. Int’l Symp. on Fault Tolerant Computing, 1996.

[6] J. Gray, editor. ”The Benchmark Handbook for Database
and Transaction Processing Systems”. Morgan Kaufmann
Publishers Inc., 1991.

[7] J. Gray and A. Reuter. ”Transaction Processing: Concepts
and Techniques”. Morgan Kaufmann Publishers Inc., 1993.

[8] S.-O. Hvasshovd and Ø. Torbjørnsen. Improved Safety in
a Shared-Nothing Parallel DBMS. Research Report STF40
A93120, SINTEF DELAB, 1993.

[9] S.-O. Hvasshovd, Ø. Torbjørnsen, S. E. Bratsberg, and
P. Holager. The ClustRa Telecom Database: High Avail-
ability, High Throughput and Real Time Response. In Pro-
ceedings of the 21st VLDB Conference, Zürich, 1995.

[10] J. Laprie. Dependable Computing and Fault Tolerance: Con-
cepts and Terminology. Proc. 15th. Ann. Int’l Symp. on Fault
Tolerant Computing, pages 2–11, 1985.

[11] I. Lee and R. Iyer. Faults, Symtoms, and Software Fault
Tolerance in the Tandem GUARDIAN Operating System.
Proc. FTCS-23, pages 20–29, 1993.

[12] W. T. Ng and P. M. Chen. Integrating Reliable Memory in
Databases. Proc. of the 23rd VLDB Conference, 1997, 1997.

[13] M. Sabaratnam, Ø. Torbjornsen, and S.-O. Hvasshovd.
Evaluating the effectiveness of fault tolerance in replicated
database management systems. In Proc. 29th. Ann. Int’l
Symp. on Fault Tolerant Computing, 1999.

[14] M. Sullivan and R. Chillarege. Software Defects and their
Impact on System Availability- A Study of Field Failures in
Operating Systems. Proc. FTCS-21, pages 2–9, 1991.

[15] M. Sullivan and R. Chillarege. A Comparison of Software
Defects in Database Management Systems and Operating
Systems. Proc. FTCS-22, pages 475–484, 1992.

[16] M. Sullivan and M. Stonebraker. Using Write Protected
Datastructures To Improve Software Fault Tolerance in
Highly Available Database Management Systems. Proc. of
the 17th VLDB Conference, 1991, pages 171–180, 1991.

